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NONLINEAR FORCED VIBRATIONS IN A HELMHOLTZ RESONATOR 

N. A. Borisova, A. P. Golovin, A. V. Gubarev, 
S. A. Laptev, A. A. Nekrasov, and O. I. Pechenova 

UDC 533.534-13 

The linear theory of a Helmholtz resonator -- a vessel with a short open neck -- was de- 
veloped by Helmholtz and Rayleigh. In this theory [i], a Helmholtz resonator is treated as 
a vibrating system with one degree of freedom (for the fundamental longitudinal mode), and in 
the first approximation it is assumed that all its kinetic energy is concentrated in the mov- 
ing gas in the neck and in a certain neighborhood of the neck opening, and the potential 
energy of elastic deformation is in the gas in the vessel. The Helmholtz resonator is dis- 
tinguished by its high Q, which is responsible for its wide use in acoustics. The process 
characterized by a periodic directed ejection of gas from a Helmholtz resonator with a sub- 
sequent suction of a new portion of gas from the space surrounding the neck inlet determined 
its technical use in devices providing pulsed periodic combustion of fuel [2, 3]. The Helm- 
holtz resonator can clearly be used in other devices also, in which pulsed periodic physical 
and chemical reactions and technological processes occur with the release of energy in gas 
mixtures, for example in a pulsed periodic gas laser. For a technical device it is important 
to intensify the process; in a Helmholtz resonator this involves the excitation of strong in- 
trinsically nonlinear vibrations [2, 3] in which the flow velocity in the neck turns out to 
be comparable with the velocity of sound. For such devices it is necessary to know the vari- 
ation in the flow rate and the intensity of mass transfer in the neck, which also determines 
their efficiency. It is clear that such information can be obtained for nonlinear vibrations 
only by numerical methods. 
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We describe unsteady gasdynamic processes in a Helmholtz resonator in the quasi-one- 
dimensional approximation 

O'~/Ot + OF/Ox + H-:-d In A/dx = O, ( 1 )  

w h e r e  

= [9, 9u, EIT; ff = [9u, p + 9u 2, 9u(P/9 + E)IT; H = [9u, 9u 2, 

9u(P/9 + E)IT; E = e +  u2/2; 

Here A is the cross-sectional area of the channel and the remaining notation is stan- 
dard. This system of equations is supplemented by the equation of state p = pRT and s = cv T. 

The numerical solution of Eqs. (i) with appropriate initial and boundary conditions pre- 
sents no particular difficulty. We used the method described briefly in [4]. In an ideal 
Helmholtz resonator commonly used in acoustics Id in A/dx I >> i at the junction of the neck 
with the vessel. This significantly complicates the computational algorithm and necessitates 
joining the solution in this region. We simplified the algorithm by assuming Id in A/dx I < i. 
This enabled us to use the straight-line algorithm in [4]. It should be noted that, in tech- 
nical devices, smooth contours of the flow region are used to reduce losses. This is evident- 
ly valid also for a Helmholtz resonator used in technical devices. Consequently, our assump- 
tion is amply justified. 

As an example, Fig. i shows the results of a numerical study of the dynamics of the dis- 
charge of a gas through the neck for Helmholtz resonators with differently shaped vessels. The 
vessels have the same volume and neck geometry. The calculation was performed for an initial 
pressure Pl = 1.4"10 4 N/m 2 in the resonator cavity, and an ambient pressure po = 1.2"10 ~ N/m 2. 

t 
In Fig. i the ordinate is ~ = m/mn, where m= S @unSndt is the flow rate of the gas through 

0 

the neck, and mn = poLnSn is the mass of gas filling the volume of the neck at p = po. The 
abscissa is the dimensionless time T = ft, where f is the natural frequency of the Helmholtz 
resonator given by the Rayleigh formula f = (ao/2~)/Sn/Ln~, where ~ is the volume of the ves- 
sel. 

Figure I shows that during the first half-period resonator No. 1 ejects at most about 
1.5 times as much gas as resonator No. 2, whereas the frequency of processes in resonator No. 
1 is about 1.3 times lower. This is in qualitative agreement with results in [5], where the 
theory of Helmholtz resonators is developed, and is due to the larger inertia of the resona- 
tor with smoothly varying geometry at the junction of the neck with the vessel. It should 
be noted that there is more than one exchange of gas in the neck of resonators even during a 
quarter half-wave, and the velocity of the gas reaches about 200 m/set, i.e., the vibrations 
in the resonator are intrinsically nonlinear. Nevertheless, the natural frequency of both 
resonators is in good agreement with the linear theory [I, 5]. 

Figure 2 shows a schematic diagram of a device in which pulsed periodic operation is 
maintained by the excitation of forced vibrations in a Helmholtz resonator. Here a pulsed 
source of thermal energy is located in the resonator neck. This device operates in the fol- 
lowing way: 

first strong vibrations are excited in the resonator in some way, for example as 
shown in Fig. i; 
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if now there is a pulsed periodic supply of thermal energy with a frequency near 
the natural frequency of the resonator, undamped vibrations can be established 
with an intense exchange of gas in the neck; 

the gas mixture ejected from the resonator enters the gas collector and is sucked 
through the gap between the resonator neck and the gas collector, resulting in a 
periodic restoration of the gas mixture to the region where the thermal energy is 
released. 

It is clear that stable operation of a device with a Helmholtz resonator requires the 
efficient exchange of the gas in the working region of the neck. The efficiency of mass 

fo+T 

transfer, characterized by the quantity ~o = mn/mo, where mn=0.5 ~ p[uJSndt is the mass of 
f0 

gas sucked in or ejected in a period T = f_1, and mo = PoSnLo is the mass of gas filling the 
working region of the neck, depends on the resonator geometry, the dimensions of the working 
region, and the specific energy input. As an example, Fig. 3 shows the dependence of ~ on t 
for optimal (curve i) and nonoptimal (curve 2) resonator geometry. It is clear from this 
that in the second case undamped (~o > i) vibrations are not realized for the given energy 
input. 

Alternative calculations of nonlinear vibrations in a Helmholtz resonator are rather 
laborious. Therefore, it is expedient to use numerical methods to select the design param- 
eters. In what follows we derive rather simple relations for determining the basic parameters 
of a Helmholtz resonator in the case of nonlinear vibrations. These relations were obtained 
by using known facts and the results of our numerical studies: i) the wavelength of natural 
vibrations in a Helmholtz resonator is much longer than its linear dimensions and, therefore, 
we assume that the flow velocity in the neck is constant along its length, i.e., ~u/~x = 0; 
2) the flow velocity in the vessel is negligibly small, i.e., the pressure in the vessel is 
uniform over its volume; 3) the flow velocity in the neck varies almost sinusoidally, i.e., 
we can describe the time dependence of the velocity by u = uo sin ~t; the nonlinearity has 
only a small effect on the natural frequency. 

Then the equation of motion of the gas in the neck can be written in the form 

pOu/ot § @lax + ~pulul/2Dr = 0. (2)  

Here the last term takes account of the frictional resistance on the neck walls. We write 
the boundary condition at the edge of the neck in the form 

p(t) = Po ~ (pu/5)(lul - -  u), 

where the last term takes account of the dynamic head in the influx of gas into the neck. 

Taking p = Po as the first approximation, we obtain the solution of Eq. (2) in the fol- 
lowing form (for the junction of the neck with the vessel): 

p (t) = Po + 0"513o uo2 [2Uo(~176 o)t + ((~Ln!De) I sin ~ot I +  0.5 ( I sin cot [ - -  sin cot)) sin o)t]. 

From t h i s  we o b t a i n  an e x p r e s s i o n  f o r  t h e  work  done  i n  f o r c i n g  gas  t h r o u g h  t h e  n e c k  d u r i n g  
one p e r i o d  : 

fo+T 

Ap= S n ~J pudt: 43 p~176 ( 0 . 5 + ~ L n / D  ~ S n. 
~o 
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Here the first term in parentheses corresponds to the kinetic energy losses in the ejection 
of gas from the neck, and the second term describes the frictional losses on the neck walls. 
It is clear that for neck dimensions typical, for a Helmholtz resonator (Ln/D e < i0) the prin- 
cipal losses result from the ejection of gas from the neck. This conclusion was used in the 
numerical studies. 

Suppose the vibrations of the gas in a Helmholtz resonator are maintained by pulsed 
periodic heat release in the working region of the neck Lo. The total work performed by the 
heated gas in adiabatic expansion is 

where T W is the temperature of the gas immediately after the energy release and T'o is the 
temperature of the gas after adiabatic expansion to the initial pressure. 

Assuming that only one k-th of the work done in the expansion of the heated gas compen- 
sates the expenditure of energy in forcing the gas through the neck, we obtain 

6kLn ~ ]1/3 
~o ~ ,  snn~?(7--1)(O'5+~n~De) [t  + ( l  + 7 ) W - -  ( |  + ( i  + ~) W)I/~], 

where W = ET/(poSnLocvTo) is the relative energy input. 

Hence, by assuming ~o > i, we can determine either the Helmholtz geometry or the re- 

quired value of W. 

In a number of cases the value of W is limited (e.g., in a C02 laser), and may be insuf- 
ficient to excite vibrations and to ensure the necessary mass transfer. Therefore, it is of 
practical interest to consider a scheme with external excitation of nonlinear vibrations. 
One such scheme in which the volume of the vessel is varied is shown in Fig. 4. 

We describe the operation of such a device with a mobile rear wall (Fig. 4) in the 
acoustic approximation [I]. Then the variation of the flow parameters in the neck is de- 

scribed by the following system of equations: 

Ou i Op ON O~ 
Ot + p---'o 0-'-7 - + a ~  O - - [ " + P ~  (3) 

where ~o takes account of frictional and radiation losses. 

Assuming that the pressure is uniform over the volume of the resonator vessel and that 
the mobile wall is vibrated harmonically, i.e., the volume of the vessel varies according to 
the law ~ = ~o(i + v exp imt), we obtain the solution of Eqs. (3) in the form: 

for the velocity of the gas in the neck, 

exp ~ ~ -- I) ~ exp ~(I -- 7) (4) 
u (x, t) = v ()~ _ e) exp (-- k) - -  (L + e) exp k exp imp; 

for the pressure in the vessel, 

exp h -- exp (-- ~) ~ exp ion ,  (5) 
p (t) = Po + % (k _ e) exp (--)~) - -  (h + ~) exp %' 

where X = /ik~ -- ~2, X = v~oa2o is the amplitude of the pressure variations in a closed ves- 
sel, k = uoLn/ao, and e = SnLn/~o. In writing solutions (4) and (5) we have used the follow- 

ing dimensionless quantities: 

x = x/Lfi~, ~ = tao/Lm ~ = ~Ln/ao. 

We can obtain from this the amplitudes of the pressure variations in the vessel, the phase 
shift of the vibrations, and the resonance frequencies. For k << ~, we have, for the first 
harmonic, ~o ~ ao#Sn/Ln~o, which agrees with [i, 5], and the amplitude of the pressure varia- 

tions is given by 

hp ~ Poa~V ( t  + 0.33e) (1 + e/k2). 

Since the total venting of the volume of the neck requires a pressure change ~p ~ 9oa2or 
in the vessel, we obtain for v, 
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Numerical studies showed that the natural frequency of nonlinear vibrations of a Helmholtz 
resonator practically coincides with ~o = ao/Sn/Ln~o, and the amplitude of the pressures in 
the vessel is in good agreement with the estimates obtained by assuming that the loss factor 
~o is determined only by losses of kinetic energy of the gas jet emerging from the neck. 

To study the characteristics of a Helmholtz resonator with a mobile wall, we constructed 
the apparatus shown schematically in Fig. 4 together with the coordinate system used in the 
measurements. The resonator vessel was a ~ 10 -3 m 3 cylindrical flask. The neck was about 
5.10 -2 m long and about 2.4.10 -2 m in diameter. Measurements showed that the natural frequen- 
cy of the resonator was about 170 Hz, which is practically the same as that given by the 
linear theory [i, 5]. 

The average pressure in the resonator cavity was measured with an inertial U-tube manom- 
eter, one arm of which was connected to a long tube-probe. The dynamic component of the 
oscillating pressure was measured with a dynamic probe [6] whose sensitive element was a 
microphone. The signals were recorded by an oscillograph. Air at atmospheric pressure was 
used as a working substance. The results presented below were obtained at the resonance fre- 
quency of about 170 Hz. 

It is clear from Fig. 5, which shows the pressure variations in the resonator vessel, 
that the average pressure is higher than the ambient pressure. This excess increases with 
increasing amplitude of the vibrations of the mobile wall. The distribution of the average 
relative pressure along the axis of the resonator Apy=o = (p -- po)/po (curve i) and on the 
neck wall Apw = (PW -- po)/po (curve 2) are shown in Fig. 6 together with the distribution of 
the relative acoustic power (curve 3) of the pressure fluctuations 

CS )(S ) (~)=  IAp(~, t ) ]~ t  IAP(0, t) ldt , 

where Ap(0, t) is the pressure in the resonator vessel, and T is the period of the vibrations. 

Figure 6 shows that the average pressure p in the resonator vessel and in the surround- 
ing space near the neck is higher than po, but, in the neck, particularly near its wall, the 
average pressure is considerably reduced, and over a large part of its length it is below 
atmospheric. The distribution of the average pressure along the radius at the edge of the 
neck is shown in Fig. 7. It should be noted that the maximum flow velocity in the neck is 
more than i00 m/sec. 
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BORN APPROXIMATION OF THE SOLUTION 

OF THE INTERNAL WAVE SCATTERING PROBLEM 

S. P. Budanov, A. S. Tibilov, and V. A. Yakovlev UDC 532.593 

Difficulties in the execution of detailed and extensive measurements of internal wave 
parameters in the ocean retard, to a certain extent, the development of a correctly deduced 
theory. In particular, little is known about the internal wave energy distribution between 
different modes. For a number of reasons it is considered that, for a sufficiently definite 
thermocline, the lowest mode will dominate, whose behavior is investigated in most detail in 
theoretical respects [i]. However, higher modes characterized by higher values of the trans- 
verse velocity gradient, and increase in the possibility of local instability and degenera- 
tion into turbulence, play an important part in the development of internal wave spectra. 
Consequently, it is of interest to examine methods of energy transmission in the internal 
wave spectrum. The modal structure is evidently shaped as a function of the variability of 
a whole series of parameters specifying the propagation law and the interaction of internal 
waves in the ocean. Consequently, for instance, problems of internal wave propagation in the 
presence of horizontal density field inhomogeneities [2, 3], shear flows [4, 5], and arbitrary 
vertical density field [6], etc., were examined. A sufficiently complete list of literature 
can be found in [7-9]. 

One of the possible mechanisms of internal wave energy redistribution between different 
modes of the scattering of internal waves by localized density field inhomogeneities is dis- 
cussed. The simplest problem is formulated here: The Boussinesq approximation is used to 
describe a stratified fluid, and rotation of the earth is neglected while the density field 
inhomogeneities are considered not to vary in time and to be at rest. 

Within the framework of assumptions made in the linear formulation of the problem, and 
neglecting molecular viscosity forces, the initial system of equations describing the dynamic 
state of the medium has the form [i] 

~Uat + VP+To P gk=0,  VU=0, "-37 +Uvp~-pog Now=0, (1) 

where U -= {u, v, w} is the velocity vector of particles of the medium; p, pressure; p, devia- 
tion of the density from the initial density distribution, equal to p(z) + pl (r), where $(z) 
is the density distribution in the absence of inhomogeneities and p l (r) is a function char- 
acterizing the density-field inhomogeneity; r = xi + yJ + zk, and i, J, k, unit vectors 
along the Cartesian x, y, z coordinate axes; g, acceleration of gravity; N2o -= --(g/po)(d~/dz), 
Vaisala--Brunt frequency. It should be noted that stationary flows generally exist for such 
an assignment of the density field. But since these flows are sufficiently slow, they can 
be neglected in a first approximation and a density field given by a function independent of 
the time can be considered (see [3], for example). 

We will be interested below in a function U(r, t). Consequently, we go from system (i) 
over to a system of equations for u, v, w that does not contain the functions p(x, y, z) and 
p (x, y, z) : 

02 AW + N~ (Z) AhW -= ! Ah (UVpl), (2) 
Ot 2 Po 
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